Topo-Guided Custom Ablation (TGCA) and Corneal Collagen Cross-Linking (CCL) in treatment of advanced keratoectasia

Alekandar Stojanovic, MD

University Hospital North Norway

Tromsø, Norway

Jia Zhang, MD

The Refractive Surgery Center Wenzhou Medical College, China

The Problem

Progressive keratoectasia with visually disturbing irregular astigmatism (IA), occurring in keratoconus, pellucid marginal degeneration and iatrogenic (post-LASIK..), currently treatable only with invasive procedures like corneal transplantation and to some extent with intracorneal ring segments

The Goal: To develop a noninvasive treatment with potential for visual recovery in selected patients

- A: To regularize the distorted corneal optics
- B: Halt the progression of keratoectasia
- Achieve lasting visual rehabilitation
 - Aiming for vision correctable with spectacles and/or contact lenses, which allows the patient to function in her/his daily life i.e.
 - Without visual disturbances due to major irregular astigmatism (IA) or high regular astigmatism (> 5 D)
 - Any residual sphere and low astigmatism allowed

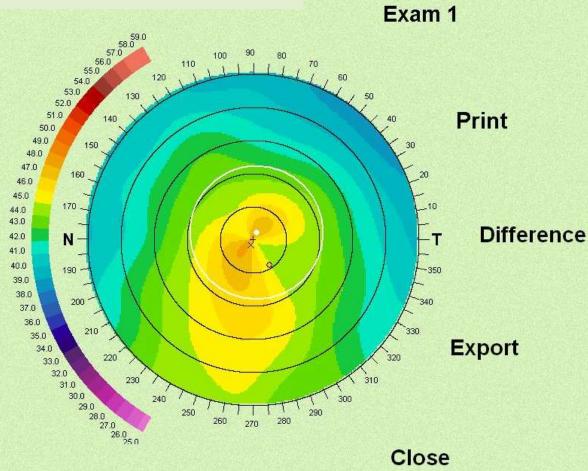
Alternatives

- Corneal Collagen Cross-Linking CCL:
 - Stiffens and stabilizes the cornea
 - Stops progression of keratoectasia, but
 - IA and/or high astigmatism not addressed The lost <u>vision</u> <u>not</u>
 restorable
- Topography guided custom ablation (TGCA):
 - Regularizes IA and/or significantly reduces high astigm., but
 - Stability probably worsened due to the further thinning of the cornea - <u>lasting</u> visual rehabilitation probably <u>not</u> achievable
- TGCA combined and followed immediately by CCL
 - Regularizes and stabilizes the cornea
 - Has potential for achievement of <u>lasting visual</u> rehabilitation

Methodology (TGCA + CCL)

- 1. TGCA stage
 - iVIS Suite's cTEN (custom transepithelial no-touch) with max. abl. depth limited to 60 μ + respecting the minimal postoperative corneal thickness of 400 μm
 - Regularize the cornea (by removing the corneal irregularities and as much as possible of the astigmatism in a most tissue sparing fashion), by allowing low postoperative astigmatism and any residual sphere
 - Epithelial removal happens in the same process
 - Enables permeability for riboflavin (the first part of the CCL stage)

Methodology (TGCA + CCL)

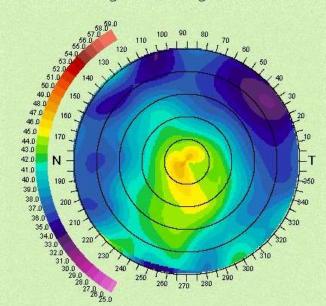

- 2. CCL stage
 - Corneal saturation with 0.1% riboflavin
 - Irradiation with 365 ηm UVA, 3mW/cm² for 30 minutes

Case presentation

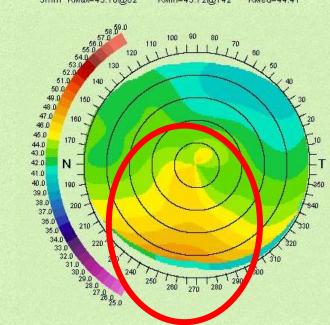
- 29 y.o. male,
 - Progressive, previously untreated keratoconus o.s.
 - HCL intolerant
 - Non satisfactory correction with spectacles due to the high astigmatism power and IA
- Preoperative status
 - BSCVA: -1.25-6.00 X 140: 20/50
 - mean K: 47.2 D
 - Minimal corneal thickness: 454 μm

pre-op curvature maps

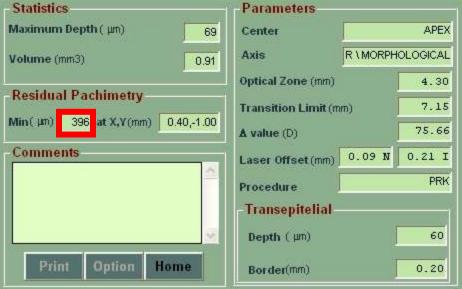
Patient: Marschhauser Vegard


Eye: OS
Exam Type: Surgery

Anterior Tangential Power Map

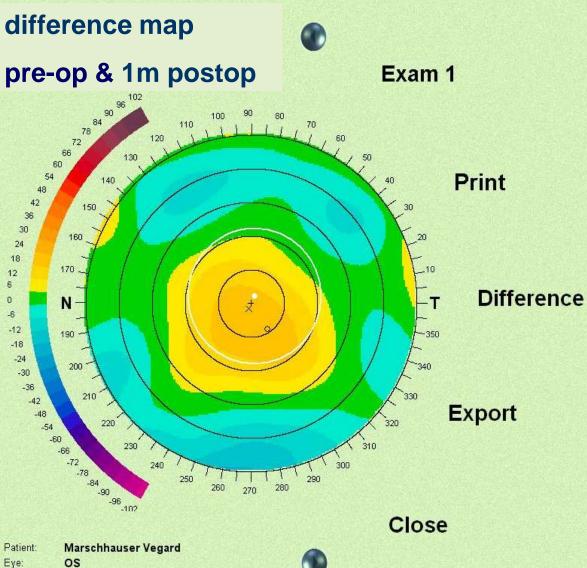

3mm KMax=44.01@98 KMin=42.48@37

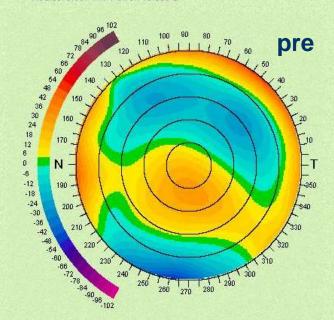
KMed=43.25



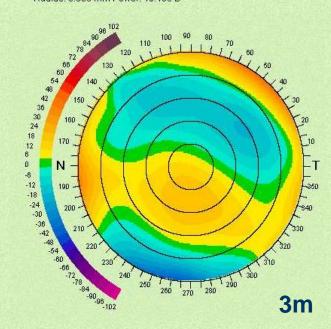
Total Power Map

3mm KMax=45.10@62 KMin=43.72@142 KMed=44.41




Result 3,6 and 12 months p.o.

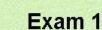
- Patient achieved good and stable vision with use of spectacle correction
- Preoperative parameters change:
 - BSCVA: from 20/50 to 20/25
 - Cylinder: from 6.00 D to 2.00 D
 - Mean K: from 47.2 D to 44.7 D
 - Minimal corneal thickness: 454 μm to 440 μm
- Clear cornea

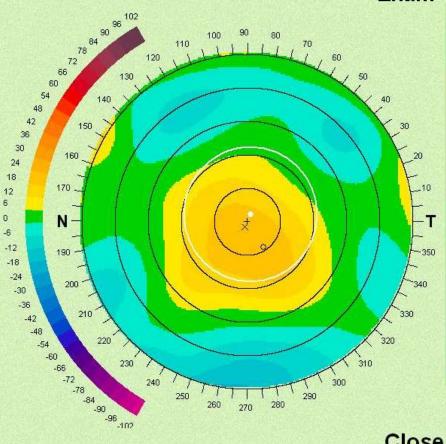

Anterior Elevation Map

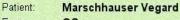
Radius: 8,007 mm Power: 46,960 D

Anterior Elevation Map

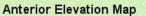
Radius: 8.088 mm Power: 46.490 D


os

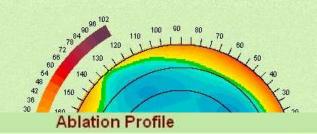

Exam Type: Surgery

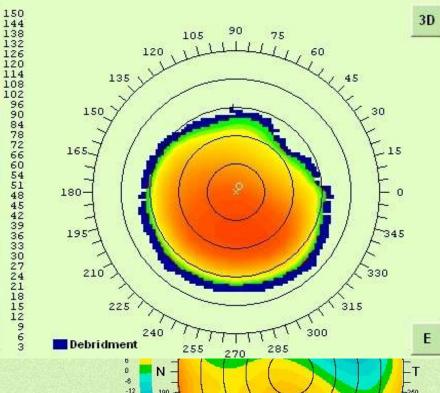

Difference Map

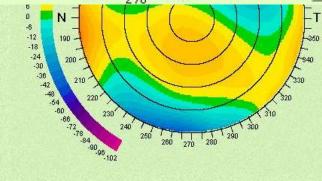
Max local diff. at 6mm: 20.0 um at X= 0.10 Y= -0.65 mm Total average diff. at 6mm; 8.1 um Hemi average diff. at 10mm: | 1.3 um -- 0.2 um / 0.8 um \ 1.2 um Quad average diff. at 10mm: + 0.8 um x 2.2 um



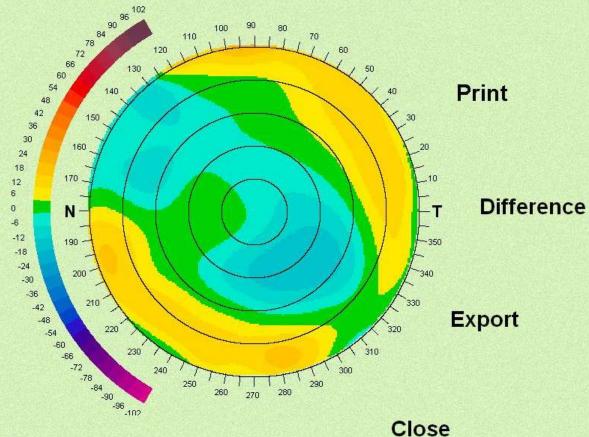
Close

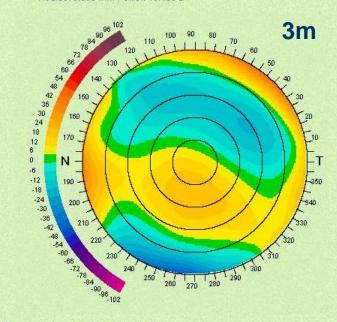



Eye: os Exam Type: Surgery

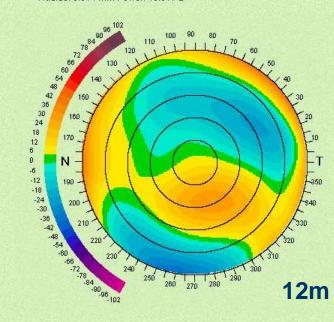


Radius: 8.007 mm Power: 46.960 D




Patient: Marschhauser Vegard

Eye: OS
Exam Type: Surgery


Anterior Elevation Map

Radius: 8,088 mm Power; 46,490 D

Anterior Elevation Map

Radius: 8.014 mm Power: 46.917 D

Implications - combined treatment

- CCL strengthens the human in vtro corneal stress/strain resistance by a factor of 3
- Laser ablation causes corneal thinning and weakens the cornea by a certain unknown factor
- A combined procedure should result in net strengthening of the cornea to stop the keratoectasia
 - Exact measurements currently under development (ORA...) and one has to use only clinical judgment in case selection

Implications - TGA part

- TGA must be performed as surface ablation
 - Not waste tissue on LASIK flap
- TGA should be performed in "Minimized ablation" mode
 - Aim for a regular corneal surface by using a target sphere/cyl that results in least tissue consumption
- TGA should be performed in transepithelial ablation mode (epithelium included in the ablation plan)
 - Results in most accurate delivery of the ablation plan
 - Only the necessary area of epithelium removed speeds up reepithelialization

Conclusions

