Refinement of Pre-Set Corneal Epithelial Thickness and Stromal Ablation Rate in One-Step Trans-Epithelial Ablations

- Michael Goggin
- Lourens van Zyl
- Peter Stewart
- Viki Andersons

No financial interests.
C-TEN: trans-epithelial PRK
iVis excimer laser suite (iVis Technologies)

• Pre-refinement ablation calculation values

 – Preset epithelial thickness
 • 65 μ over whole ablation zone
 – Assumed ablation rate (average stroma and epithelium)
 • 1.48 μ per “layer”

 – Epithelial ablation rate slightly higher than stromal ablation rate.
C-TEN: trans-epithelial PRK
iVis excimer laser suite (iVis Technologies)

- Consequences of error in assumed values

 - If the assumed epithelial depth is incorrect

 • If 65\(\mu\) is an overestimate

 - excess stromal ablation will take place

 • If 65\(\mu\) is an underestimate

 - insufficient stromal ablation
 - Reduction of the optical zone
 - Reduction of aspheric corrections

 - These effects will be

 - exaggerated with lower attempted stromal ablations
 - minimised in higher attempted stromal ablations

 - If the assumed stromal ablation rate is incorrect

 • Over-ablation:

 - Refractive correction not affected since uniform over whole treated area

 • Under-ablation

 - Refractive under-correction
C-TEN: trans-epithelial PRK
iVis excimer laser suite (iVis Technologies)

• Purpose of the study:
 – Establish true epithelial thickness
 – Establish a true stromal ablation rate
 – Derive a radial adjustment to allow for the thicker epithelium in the periphery of the ablation zone
Method

- 88 eyes in 64 patients
- 2 centres in Australia
- C-TEN trans-epithelial PRK for any refractive error
- 3 month follow-up
- Comparison of achieved versus attempted ablation depth
 - Precisio tomography pre-op and at 3 months ("surgical")
 - 3μ tolerance at each measured point
to 6 mm zone with test-to-test mapping
Method

• \(R_i = xE_{si} + yE_p \)
 – \(i = 1 \ldots n \), \(n \) = treated eye number
 – \(R_i \) = the real value of ablation depth including the epithelium for each treated eye;
 – \(E_{si} \) = the expected value of the ablation depth of the stroma for each treated eye (1.48 \(\mu \) per layer);
 – \(E_p \) = the constant default value used to ablate the epithelium (65\(\mu \));
 – \(x \) = the correction constant to be defined for the stromal ablation;
 – \(y \) = the correction constant to be defined for the epithelial ablation;
 – \(yE_p \) = the corrected constant of the total epithelial ablation depth.

• The Least Squares method used to define \(x \) and \(y \):
• Repeated for each radial zone from
 – 1mm to 10mm diameter
 – 1mm diameter steps
Results

Corrected epithelial thickness function
Results

• $x = 0.96$
 – correction constant for pure stromal ablation vs. average epithelium and stroma ablation rate
 – 4% over-ablation

• y_{Epj}
 – range of variability in radial distance of the corrected function vs. the default value to ablate the epithelium from the center of the ablation up to 10 mm zone.
 – -15.9% centrally
 – +15.9% peripherally,
 – unadjusted at 5mm zone
Results

• $x = 0.96$
 − Pre-adjusment assumed average ablation rate 1.48 μ per layer
 − Adjusted stromal ablation rate 1.42 μ per layer

• $y_{Epj} = +/- 15.9\%$
 − radial function in the range of $+/- 15.9\%$ of the default value of 65 μ.
Conclusion

• Pre-adjustment estimate of epithelial thickness
 – Oversesimate out to 10mm zone
 – Minimal effect on refractive outcome
 – Small stromal wastage

• Update has adjusted epithelial depth to established values

• Update has adjusted stromal ablation rate to established values